
⾃動化とプログラマビリティ



学習内容

ネットワーク⾃動化の核⼼技術を理解する

1 REST APIとは何か

2 RESTの4つの設計原則

3 REST APIのデータ形式とステータスコード

4 構成管理ツールとは

5 Ansibleの概要と特徴

6 主要ツールの⽐較とまとめ
1



01Chapter 1: REST APIの基礎

2



REST APIとは？

Webの技術を⽤いた柔軟なシステム連携の仕組み

Webシステムを外部から操作するためのAPIの⼀種

REST（Representational State Transfer）の設計原則に基づいている

クライアントとサーバがHTTPを利⽤してやり取りを⾏う

APIは「ソフトウェア同⼠が共通のルールに従ってやり取りをするための仕組み」と理解すると分かり
やすい

3



RESTの4つの主要な設計原則

試験で頻出するRESTのコアコンセプト

ハイパーメ
ディアの活

⽤
JSON/XMLなどで表現し、関連データをリンクと
して含める

HTTPメソッドによる統⼀
的インターフェース リソース操作をGET/POST/PUT/DELETEに統⼀

リソースは⼀意のURIで識別 データ（リソース）をURIで特定（例: 
/users/123）

ステートレスなクライアント/サーバモデル サーバは過去の通信状態を保持しない（各リクエ
ストが完結）

4



CRUD操作とHTTPメソッドの対応

リソースに対する操作を⼀貫して⾏うためのマッピング

CRUD操作 HTTPメソッド

作成Create POST / PUT

読み取りRead GET

更新Update PUT / PATCH

削除Delete DELETE

5



REST APIにおける主要なデータ形式

クライアントとサーバ間の情報伝達フォーマット

JSON (JavaScript Object 
Notation)

軽量で⼈間にも読みやすい。
記述が簡潔で、Cisco SDNコ
ントローラでも多⽤される。

XML (Extensible Markup 
Language)

タグを⽤いてデータの構造を
明確に表現。⾃由度が⾼く、

情報交換に広く使われる。

YAML (YAML Ain’t Markup 
Language)

インデントで階層を表現。シ
ンプルで⼈間に読みやすく、
Ansibleなどの設定ファイル

に利⽤される。

6



02Chapter 2: 構成管理ツールの活⽤

7



構成管理ツール導⼊のメリット

効率化と安定運⽤を実現するアプローチ

設定の⾃動化と効率化

複数機器へ⼀括で設定を反映し、⼯数を⼤幅に削減する

構成ドリフトの防⽌

⼈為的ミスによる設定のズレ（ドリフト）を防ぎ、正しい構成を維持する

統⼀的な運⽤

⼤規模環境でも設定の標準化を容易に⾏える

8



Ansibleの主な特⻑

ネットワーク⾃動化で最も注⽬されるツール

STEP 1 エージェントレス
（管理対象機器に専⽤ソフトが不要）

STEP 2 豊富なモジュール
（ネットワーク、クラウドなど幅広い⾃動化に対応）

STEP 3 簡単な記述⽅式
（設定ファイルはYAML形式で分かりやすい）

9



主要な構成管理ツールの⽐較

Ansible、Puppet、Chefのアーキテクチャの違い

⽐較項⽬ Ansible Puppet Chef

開発組織 RedHat Puppet Labs Chef Software

アーキテクチャ エージェントレス エージェント エージェント

管理⽅式 Push型（サーバから配布） Pull型（対象機器が取得） Pull型

記述⾔語 YAML 独⾃DSL Ruby

10


